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U  Why Massively Parallel Computing?

= "Compute is cheap" ...

= ... "Bandwidth is expensive"

= Main memory is ~500 clock
cycles "far away" from the
processor (GPU or CPU)
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W Moore's Law & The Brick Wall ‘E:
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"More Moore" with GPUs
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Gflops Single Precision BLAS:
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W  GPU Accelerated Libraries ("Drop-In Acceleration) Sl

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA NPP

Vector Signal GPU Accelerated Matrix Algebra on 0
Image Processing Linear Algebra GPU and Multicore

ROGUE WAVE

SOFTWARE
IMSL Library Computations Algebra  pghm for CUDA

ArrayFire Matrix Sparse Linear C++ STL Features )

G. Zachmann Massively Parallel Algorithms SS April 2014 Organization 6



eeeeee

Y When Power Consumption Matters

= Energy consumption is a serious issue on
mobile devices

= Example: image processing on a
mobile device (geometric distortion +
blurring + color transformation)
= Power consumption:
= CPU (ARM Cortex A8):  3.93 }/frame
= GPU (PowerVR SGX 530): 0.56 J/frame (~14%)
- 0.26 ]/frame when data is already on the GPU

= High parallelism at low clock frequencies (110 MHz)
is better than
low parallelism at high clock frequencies (550 Mhz)

= Power dissipation increases super-linearly with frequency
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Y The Trend of Electrical Efficiency of Computation

= Like
Moore's
law, there
isatrend
towards
more
compute

power
per kWh =
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W  Areas Benefitting from Massively Parallel Algos

= Computer science (e.g., visual computing, database search)

= Computational material science (e.g., molecular dynamics sim.)
= Bio-informatics (e.qg., alignment, sequencing, ...)

= Economics (e.g., simulation of financial models)

= Mathematics (e.g., solving large PDEs)

" Mechanical engineering (e.g., CFD and FEM)

= Physics (e.qg., ab initio simulations)

= Logistics (e.g. simulation of traffic, assembly lines, or supply chains)
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Some Statistics of the TOP500

= Who does parallel computing:

= Note that respondents had to
choose just one area

= "Not specified" probably means
"many areas"

Operating Systems

M Linux

B AIX

[ Cray Linux Environment
M CNK/SLES 9

I SLES10 + SGI ProPac...
M bullx SUperCOmputer ...
B SUSE Linux Enterprise...
[ JeNN

13V
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Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray

Gemini interconnec

= Qur target
platform

(GPU) is being ™

System URL:

u Sed amon g Manufacturer:
the TOP500 Cores:

Linpack Performance (Rmax)
[Nov 2012]:

Theoretical Peak (Rpeak)
Power:

Memory:

Interconnect:

Operating System:

DOE/SC/Oak Ridge National Laboratory
http://www.olcf.ornl.gov/titan/

Cray Inc.

560640

17590.0 TFlop/s

27112.5 TFlop/s

8209.00 kW

710144 GB

Cray Gemini interconnect

Cray Linux Environment

Total Rmax Rpeak Power
List Rank System Vendor Cores (TFlops) (TFlops) (kW)
@ Cray XK7 , Opteron 6274 16C Cray 560640 17590.0 271125 8209.00

2. 2IIiIi Cray Gemini interconnect, Inc.
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The Von-Neumann Architecture ‘?%

= Uses the stored-program concept (revolutionary at the time of its
conception)

= Memory is used for both program instructions and data
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W The GPU = the New Architecture

= CPU = lots of cache, little SIMD, a few cores

= GPU = little cache, massive SIMD, lots of cores (packaged into

"streaming multi-processors")
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U  The Stream Programming Model

= Novel programming paradigm that tries to organise data &
functions such that (as much as possible) only streaming memory
access will be done, and as little random access as possible:

= Stream Programming Model =
"Streams of data passing through computation kernels."

= Stream := ordered, homogenous set of data of arbitrary type (array)

= Kernel := program to be performed on each element of the input
stream; produces (usually) one new output stream

stream A, B, C;
— ‘g— kernelfuncl(input: A,
] S o A BN
| S L &) S =P S output: B );
57 (3 -5 3 -5 ,
e = kernelfunc2( input: B,
] output: C);
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U  Flynn's Taxonomy
= Two dimensions: instructions and data
= Two values: single and multiple
instructions
SISD i MISD
single instruction, single data ' multiple instruction, single data
SIMD MIMD
S single instruction, multiple data ' multiple instruction, multiple data
S i
prev instruct prev instruct prev instruct i prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n) i load A(1) call funcD do 10 i=1,N
load B(1) load B(2) load B(n) -1 load B(1) x=y"2 alpha=w**3 -
3, e
C(1)=A(1)*B(1) C(2)=A(2)*B(2) C(n)=A(n)'B(n)| |° ! C(1)=A(1)*B(1) sum=x"2 zeta=C(j) o
store C(1) store C(2) store C(n) i store C(1) call sub1(i,j) 10 continue
next instruct next instruct next instruct M i next instruct next instruct next instruct
v P1 P2 Pn ; P1 P2 Pn
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W Some Terminology &
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= Task :=logically discrete section of computational work; typically
a program or procedure

= Parallel Task := task that can be executed in parallel by multiple
processors, such that this yields the correct results

= Shared memory :=

= Hardware point of view: all processors have direct access to common
physical memory,

= Software point of view: all parallel tasks have the same "picture" of
memory and can directly address and access the same logical memory
locations regardless of where the physical memory actually exists

= Communication := exchange of data among parallel tasks, e.qg.,
through shared memory

G. Zachmann Massively Parallel Algorithms SS April 2014 Organization 16
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= Synchronization := coordination of parallel tasks, very often
associated with communications; often implemented by
establishing a synchronization point within an application
where a task may not proceed further until another task (or all
other tasks) reaches the same or logically equivalent point

= Synchronization usually involves waiting by at least one task, and can
therefore cause a parallel application's execution time to increase

= Granularity := qualitative measure of the ratio of computation to

synchronization

= Coarse granularity: large amounts of computational
work can be done between synchronization points - ~
3 3
= Fine granularity: lots of synchronization points ° ?
sprinkled throughout the computational work
' communication 4 4
[ computation
Organization 17
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= Synchronous communication := requires some kind of
"handshaking" (i.e., synchronization mechanism)

= Asynchronous communication := no sync required
= Example: task 1 sends a message to task 2, but doesn't wait for a

response
= A.k.a. non-blocking communication
" Collective communication := more than 2 tasks are involved

SS April 2014
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= Observed Speedup := measure for performance of parallel code

wall-clock execution time of best known serial code
speedup =

wall-clock execution time of your parallel code

= One of the simplest and most widely used indicators for a parallel
program's performance
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W Amdahl's Law

" Quick discussion:
= Suppose we want to do a 5000 piece jigsaw puzzle
= Time for one person to complete puzzle: n hours

= How much time do we need, if we add 1T more
person at the table?

= How much time, if we add 100 persons?

G. Zachmann Massively Parallel Algorithms SS April 2014
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Amdahl's Law (the "Pessimist")

= Assume a program execution consists of two parts: Pand §

= P =time for parallelizable part ,

§ = time for inherently sequential part

= W.l.o.g.setP+§5=1

= Assume further that the
time taken by N processors
working on Pis 4

P
N

= Then, the maximum speedup

achievable is

speedup 4(N)

G. Zachmann

1

Massively Parallel Algorithms

T (1-P)+

SS

P
N

20.00

18.00

16.00

14.00

12.00

10.00

Speedup

8.00
6.00
4.00
2.00

0.00

April 2014

)
>
<n

E-X3)

/‘
P
- .
/ Parallel Portion
7 —— 50%
/ ——75%
- 90%
/ ——95%
//
// ///
/
V/ 1|
/

o
-

N < -] o ﬁ <
™ o ﬁ n ~N
o~ wn s

Number of Processors

g

4096
8192

Organization

16384

32768

65536

21

b



= Graphical representation of Amdahl:

(You can squeeze the parallel part as much as you like, by throwing more
processors at it, but you cannot squeeze the sequential part)

= Parallel Overhead := amount of time required to coordinate
parallel tasks, as opposed to doing useful work; can include
factors such as: task start-up time, synchronizations, data
communications, etc.

= Scalable problem := problem where parallelizable part P
increases with problem size
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W Gustafson's Law (the "Optimist") ¢

"
7. cG

= Assume a family of programs, that all run in a fixed time frame T,
with

. Si(seq) | Pi(par) | P2(par}) | S:(seq)
= a sequential part §,

= and a time portion Q for parallel execution,
= T=5+0Q | T

S1(seq) | Py{par) | Sz(seq)

i
.

P2 (par)
= Assume, we can deploy N processors, —
working on larger and larger problem
. . S (seq) | Py(par) | Pz(par) | Ps(par) | Py(par) | Sy(seq)
sizes in parallel

T

= So, Gustafson's speedup is

S1(seq) | Pi(par) | Sz(seq)
P (par)
S+ QN . i
speedup(N) = > 00, with N — oo Pu (par)
S+@ a
G. Zachmann Massively Parallel Algorithms SS April 2014
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