Bremen

Y

a2 e

Massively Parallel Algorithms
Introduction

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

eeeeee

U Why Massively Parallel Computing?

= "Compute is cheap" ...

= ... "Bandwidth is expensive"

= Main memory is ~500 clock
cycles "far away" from the
processor (GPU or CPU)

G. Zachmann Massively Parallel Algorithms SS

—'>’ '<'—O.5mm

64-bit FPU
(to scale)

April 2014

12mm

Organization

B
<n
E-X3)

Bremen

W Moore's Law & The Brick Wall ‘E:

Moore's Law (it's really only an observation) CPU speed
A1 -4
16-Core SPARC T3 r4 ﬁ.
Six-Core Core i7. L .:
2,600,000,000 Six-Core Xeon 7400, ©10-Core Xeon Wastmere-EX "k‘ ¢ e *
Dual-Core ltanium 2@ @ ~B-core POWERT 10° - o*
1,000,000,0001 oy KA ST ke 3" :
Ranium 2 with 8MB cache @ .\ Six-Core Opteron 2400 P
AMD K;y Core i7 (Quad) ?oo
Itanium 2 @ / ?;I'Ie 2buoo
100,000,000 AMD K8 .2 .
@Barton -
Pantium 4 ® Atom o®
AR g 107 -,
= curve shows transistor AMD K6 %
S 10,000,000 count doubling every |‘;m°m Peniur 1 5 .
§ two years p@nm":w s _3 . I,
..9 E B - L
(2] (@] ®e
o 1,000,000 & . N .
C o 101 -
g £ . -
100,000
o °
10,000 10°- -
2,300 - .
I T - ;) U J 1 1 1 | 1
1971 1980 1990 2000 2011 1980 1985 1990 Year1995 2000 2005 2010

Date of introduction

G. Zachmann Massively Parallel Algorithms SS April 2014 Organization 3

Bremen

Y

"More Moore" with GPUs

Theoretical GB/s

GeForceGTX 680
200 ‘
180 GeForceGTX 480
e CPU
160
=®=GPU (. ForceGTXx280
140
120 /
100
eForce 8800 ;T/
80
60 CeForce7800GTX / Sandy Bridge
GeFprce 6800 GT / Westmere
40 - / Bloomfield
rceFx 5900 Woodcrest
Prescott
Harpertown
0 Worth

ww T T T T T T T T 1
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Memory Bandwidth

G.

Zachmann

Massively Parallel Algorithms SS

Theoretical
GFLOP/s
3250

3000
2750
2500
2250
2000
1750
1500
1250
1000
750
500
250 -

0
Sep _@Pntium 4

April 2014

GekEol
ForceFX

=== NVIDIA GPU Single Predsion
g NVIDIA GPU Double Precdision
=g |ntel CPU Single Predsion
et |ntel CPU Double Precision

Jun-04 Mar-0

Harpertown Dg?gé"ae

cG
= VR

Tesla C2050 Sandy Bridge
Aug-12

Theoretical Peak Performance

Organization 4

eeeee

Gflops Single Precision BLAS:
SGEMM

400
350
300
250
200
150
100

-=-Tesla C1060

Matrix Size

CUBLAS: CUDA 2.3, Tesla C1060

MKL 10.0.3: Intel Core2 Extreme, 3.00GHz

G. Zachmann

Massively Parallel Algorithms

SS

&, wn
. CG %"

April 2014

gl '§

System Solve SvD

QR

mIntel MKL @CULA

= _

Matrix Size = 10k

Eigenproblem

NVIDIA C2070 vs Xeon X5560

Organization

VR

Bremen

W GPU Accelerated Libraries ("Drop-In Acceleration) Sl

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA NPP

Vector Signal GPU Accelerated Matrix Algebra on 0
Image Processing Linear Algebra GPU and Multicore

ROGUE WAVE

SOFTWARE
IMSL Library Computations Algebra pghm for CUDA

ArrayFire Matrix Sparse Linear C++ STL Features)

G. Zachmann Massively Parallel Algorithms SS April 2014 Organization 6

eeeeee

Y When Power Consumption Matters

= Energy consumption is a serious issue on
mobile devices

= Example: image processing on a
mobile device (geometric distortion +
blurring + color transformation)
= Power consumption:
= CPU (ARM Cortex A8): 3.93 }/frame
= GPU (PowerVR SGX 530): 0.56 J/frame (~14%)
- 0.26]/frame when data is already on the GPU

= High parallelism at low clock frequencies (110 MHz)
is better than
low parallelism at high clock frequencies (550 Mhz)

= Power dissipation increases super-linearly with frequency

G. Zachmann Massively Parallel Algorithms SS April 2014

Organization

Bremen

Y The Trend of Electrical Efficiency of Computation

= Like
Moore's
law, there
isatrend
towards
more
compute

power
per kWh =

1.E+15

1.E+10

09

+06

G. Zachmann

1940

Massively Parallel Algorithms

Vacuum-tube Era TransistorEra Microprocessor Era

SICORTEX SC5832

CURRENT LAPTOPS
rYs

DELL DIMENSION 2400 o /'1:

GATEWAY P3 (733 MHz) — @

L]
’
L
’

7’
DELL OPTIPLEX GXI —+

‘e

7’
IBMPS/2 E & SUN SS1000 o o,” ®
I,’
s
INTEL 486/25 & 486/33 ¢
’

’
’

COMPUTATIONS
PER KILOWATT-HOUR

’
MACINTOSH 128K o,
’,

L
IBM PC ’.,,”.0 IBM PC-AT

e 'BMPC-XT
RAY1 %
e .9’, ®e APPLE lle

/, COMMODORE 64
DECPDP-11/20 o ’
’

" ALTAIR 8800
SDS 920

’
® /e UNIVACII

‘s
’
L]
o)/
7’
’

7 0%
/o ®UNIVACII
,I
’ °
II °
,~/ ®@—UNIVACI

’ °

o
EDVAC

ENIAC

1950 1960 1970 1980 1990 2000

SS April 2014

7’
o;/.
./
4
7’

2010

If a MacBook
Air were as
inefficient as
a 1991
computer,
the battery
would last
2.5 seconds.

\v

Organization

<n
za
e n]

Assessing Trends in the Electrical Efficiency of Computation Over Time" Koomey et al., 2009

eeeeee

W Areas Benefitting from Massively Parallel Algos

= Computer science (e.g., visual computing, database search)

= Computational material science (e.g., molecular dynamics sim.)
= Bio-informatics (e.qg., alignment, sequencing, ...)

= Economics (e.g., simulation of financial models)

= Mathematics (e.g., solving large PDEs)

" Mechanical engineering (e.g., CFD and FEM)

= Physics (e.qg., ab initio simulations)

= Logistics (e.g. simulation of traffic, assembly lines, or supply chains)

G. Zachmann Massively Parallel Algorithms SS April 2014 Organization

Bremen

Y

Some Statistics of the TOP500

= Who does parallel computing:

= Note that respondents had to
choose just one area

= "Not specified" probably means
"many areas"

Operating Systems

M Linux

B AIX

[Cray Linux Environment
M CNK/SLES 9

I SLES10 + SGI ProPac...
M bullx SUperCOmputer ...
B SUSE Linux Enterprise...
[JeNN

13V

G. Zachmann Massively Parallel Algorithms SS April 2014

Application Area

Segments

CcG
VR

B Not Specified

M Research

I Web Services

M Geophysics

B Weather and Climate ...
M Energy

M Defense

M Benchmarking

1713V

M Industry

B Research
[Academic
M Government
M Vendor

M Classified

Organization 10

Bremen

Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray

Gemini interconnec

= Qur target
platform

(GPU) is being ™

System URL:

u Sed amon g Manufacturer:
the TOP500 Cores:

Linpack Performance (Rmax)
[Nov 2012]:

Theoretical Peak (Rpeak)
Power:

Memory:

Interconnect:

Operating System:

DOE/SC/Oak Ridge National Laboratory
http://www.olcf.ornl.gov/titan/

Cray Inc.

560640

17590.0 TFlop/s

27112.5 TFlop/s

8209.00 kW

710144 GB

Cray Gemini interconnect

Cray Linux Environment

Total Rmax Rpeak Power
List Rank System Vendor Cores (TFlops) (TFlops) (kW)
@ Cray XK7 , Opteron 6274 16C Cray 560640 17590.0 271125 8209.00

2. 2IIiIi Cray Gemini interconnect, Inc.

G. Zachmann Massively Parallel Algorithms SS April 2014

Source: www.top500.0rg

Organization 11

Bremen

Y

The Von-Neumann Architecture ‘?%

= Uses the stored-program concept (revolutionary at the time of its
conception)

= Memory is used for both program instructions and data

§

Al
YR &
A —
0=
=) : ——
n =
Fetch Execute n- BRI
"=
—
C =
ALU P -

G. Zachmann Massively Parallel Algorithms SS April 2014 Organization 12

eeeeee

W The GPU = the New Architecture

= CPU = lots of cache, little SIMD, a few cores

= GPU = little cache, massive SIMD, lots of cores (packaged into

"streaming multi-processors")

Control

ALU

ALU

G. Zachmann

Massively Parallel Algorithms

ALU

ALU

SS

April 2014

-
-
-
-
-
-
-
-

Organization

13

eeeeee

U The Stream Programming Model

= Novel programming paradigm that tries to organise data &
functions such that (as much as possible) only streaming memory
access will be done, and as little random access as possible:

= Stream Programming Model =
"Streams of data passing through computation kernels."

= Stream := ordered, homogenous set of data of arbitrary type (array)

= Kernel := program to be performed on each element of the input
stream; produces (usually) one new output stream

stream A, B, C;
— ‘g— kernelfuncl(input: A,
] S o A BN
| S L &) S =P S output: B);
57 (3 -5 3 -5 ,
e = kernelfunc2(input: B,
] output: C);

G. Zachmann Massively Parallel Algorithms SS April 2014 Organization

>
%

o Ceco

<n
E-X3)
]

14

eeeee

.l .

Y
<n
E-X3)
]

!
U Flynn's Taxonomy
= Two dimensions: instructions and data
= Two values: single and multiple
instructions
SISD i MISD
single instruction, single data ' multiple instruction, single data
SIMD MIMD
S single instruction, multiple data ' multiple instruction, multiple data
S i
prev instruct prev instruct prev instruct i prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n) i load A(1) call funcD do 10 i=1,N
load B(1) load B(2) load B(n) -1 load B(1) x=y"2 alpha=w**3 -
3, e
C(1)=A(1)*B(1) C(2)=A(2)*B(2) C(n)=A(n)'B(n)| |° ! C(1)=A(1)*B(1) sum=x"2 zeta=C(j) o
store C(1) store C(2) store C(n) i store C(1) call sub1(i,j) 10 continue
next instruct next instruct next instruct M i next instruct next instruct next instruct
v P1 P2 Pn ; P1 P2 Pn
G. Zachmann Massively Parallel Algorithms SS April 2014 Organization

15

eeeeee

W Some Terminology &

l.l
7 ce

= Task :=logically discrete section of computational work; typically
a program or procedure

= Parallel Task := task that can be executed in parallel by multiple
processors, such that this yields the correct results

= Shared memory :=

= Hardware point of view: all processors have direct access to common
physical memory,

= Software point of view: all parallel tasks have the same "picture" of
memory and can directly address and access the same logical memory
locations regardless of where the physical memory actually exists

= Communication := exchange of data among parallel tasks, e.qg.,
through shared memory

G. Zachmann Massively Parallel Algorithms SS April 2014 Organization 16

VR X

eeeeee

¢ §
?f CcG

° VR

= Synchronization := coordination of parallel tasks, very often
associated with communications; often implemented by
establishing a synchronization point within an application
where a task may not proceed further until another task (or all
other tasks) reaches the same or logically equivalent point

= Synchronization usually involves waiting by at least one task, and can
therefore cause a parallel application's execution time to increase

= Granularity := qualitative measure of the ratio of computation to

synchronization

= Coarse granularity: large amounts of computational
work can be done between synchronization points - ~
3 3
= Fine granularity: lots of synchronization points ° ?
sprinkled throughout the computational work
' communication 4 4
[computation
Organization 17

G. Zachmann Massively Parallel Algorithms SS April 2014

eeeee

= Synchronous communication := requires some kind of
"handshaking" (i.e., synchronization mechanism)

= Asynchronous communication := no sync required
= Example: task 1 sends a message to task 2, but doesn't wait for a

response
= A.k.a. non-blocking communication
" Collective communication := more than 2 tasks are involved

SS April 2014

G. Zachmann Massively Parallel Algorithms

e

§ 9 4
-
<n

Organization

E-X3)

b

18

= Observed Speedup := measure for performance of parallel code

wall-clock execution time of best known serial code
speedup =

wall-clock execution time of your parallel code

= One of the simplest and most widely used indicators for a parallel
program's performance

G. Zachmann Massively Parallel Algorithms SS April 2014 Organization

7
-

E-X3)

R

<n

19

eeeeee

W Amdahl's Law

" Quick discussion:
= Suppose we want to do a 5000 piece jigsaw puzzle
= Time for one person to complete puzzle: n hours

= How much time do we need, if we add 1T more
person at the table?

= How much time, if we add 100 persons?

G. Zachmann Massively Parallel Algorithms SS April 2014

Organization

20

Bremen

Y

Amdahl's Law (the "Pessimist")

= Assume a program execution consists of two parts: Pand §

= P =time for parallelizable part ,

§ = time for inherently sequential part

= W.l.o.g.setP+§5=1

= Assume further that the
time taken by N processors
working on Pis 4

P
N

= Then, the maximum speedup

achievable is

speedup 4(N)

G. Zachmann

1

Massively Parallel Algorithms

T (1-P)+

SS

P
N

20.00

18.00

16.00

14.00

12.00

10.00

Speedup

8.00
6.00
4.00
2.00

0.00

April 2014

)
>
<n

E-X3)

/‘
P
- .
/ Parallel Portion
7 —— 50%
/ ——75%
- 90%
/ ——95%
//
// ///
/
V/ 1|
/

o
-

N < -] o ﬁ <
™ o ﬁ n ~N
o~ wn s

Number of Processors

g

4096
8192

Organization

16384

32768

65536

21

b

= Graphical representation of Amdahl:

(You can squeeze the parallel part as much as you like, by throwing more
processors at it, but you cannot squeeze the sequential part)

= Parallel Overhead := amount of time required to coordinate
parallel tasks, as opposed to doing useful work; can include
factors such as: task start-up time, synchronizations, data
communications, etc.

= Scalable problem := problem where parallelizable part P
increases with problem size

G. Zachmann Massively Parallel Algorithms SS April 2014 Organization

l.l
7. cG
VR

22

Bremen

W Gustafson's Law (the "Optimist") ¢

"
7. cG

= Assume a family of programs, that all run in a fixed time frame T,
with

. Si(seq) | Pi(par) | P2(par}) | S:(seq)
= a sequential part §,

= and a time portion Q for parallel execution,
= T=5+0Q | T

S1(seq) | Py{par) | Sz(seq)

i
.

P2 (par)
= Assume, we can deploy N processors, —
working on larger and larger problem
. . S (seq) | Py(par) | Pz(par) | Ps(par) | Py(par) | Sy(seq)
sizes in parallel

T

= So, Gustafson's speedup is

S1(seq) | Pi(par) | Sz(seq)
P (par)
S+ QN . i
speedup(N) = > 00, with N — oo Pu (par)
S+@ a
G. Zachmann Massively Parallel Algorithms SS April 2014

Organization 23

VR

